1,085 research outputs found

    Autonomous Systems, Robotics, and Computing Systems Capability Roadmap: NRC Dialogue

    Get PDF
    Contents include the following: Introduction. Process, Mission Drivers, Deliverables, and Interfaces. Autonomy. Crew-Centered and Remote Operations. Integrated Systems Health Management. Autonomous Vehicle Control. Autonomous Process Control. Robotics. Robotics for Solar System Exploration. Robotics for Lunar and Planetary Habitation. Robotics for In-Space Operations. Computing Systems. Conclusion

    Characterization and Bioremediation of Birch Condensate

    Get PDF
    Birch (Betula papyrifera Marsh) condensate collected from a veneer plant in Michigan was analyzed for its major chemical constituents. This condensate contained carbohydrates and lipids. In the lipid fractions, triglycerides were the most abundant component (35-40%), followed by phenolic compounds (30%) and waxes (25-30%). Gas Chromatography-Mass Spectrometry (GC-MS) and Fast Atom Bombardment (FAB) MS were used to identify 14 lipid compounds. A white rot fungus, Phanerochaete chrysosporium [Burdsall-lombard, 5176, HHB-6251], was tested as a means for the bio-remediation of the condensate. P. chrysosporium reduced the total organic content (TOC) of the condensate from 350 ppm to 22 ppm and the color intensity from 0.614 to 0.355 absorbance units, after 2 weeks incubation in a liquid medium containing yeast and peptonc at pH 5

    Non-invasive monitoring of tissue oxygenation during laparoscopic donor nephrectomy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Standard methods for assessment of organ viability during surgery are typically limited to visual cues and tactile feedback in open surgery. However, during laparoscopic surgery, these processes are impaired. This is of particular relevance during laparoscopic renal donation, where the condition of the kidney must be optimized despite considerable manipulation. However, there is no <it>in vivo </it>methodology to monitor renal parenchymal oxygenation during laparoscopic surgery.</p> <p>Methods</p> <p>We have developed a method for the real time, <it>in vivo</it>, whole organ assessment of tissue oxygenation during laparoscopic nephrectomy to convey meaningful biological data to the surgeon during laparoscopic surgery. We apply the 3-CCD (charge coupled device) camera to monitor qualitatively renal parenchymal oxygenation with potential real-time video capability.</p> <p>Results</p> <p>We have validated this methodology in a porcine model across a range of hypoxic conditions, and have then applied the method during clinical laparoscopic donor nephrectomies during clinically relevant pneumoperitoneum. 3-CCD image enhancement produces mean region of interest (ROI) intensity values that can be directly correlated with blood oxygen saturation measurements (R<sup>2 </sup>> 0.96). The calculated mean ROI intensity values obtained at the beginning of the laparoscopic nephrectomy do not differ significantly from mean ROI intensity values calculated immediately before kidney removal (<it>p </it>> 0.05).</p> <p>Conclusion</p> <p>Here, using the 3-CCD camera, we qualitatively monitor tissue oxygenation. This means of assessing intraoperative tissue oxygenation may be a useful method to avoid unintended ischemic injury during laparoscopic surgery. Preliminary results indicate that no significant changes in renal oxygenation occur as a result of pneumoperitoneum.</p

    Seedbank Persistence of Palmer Amaranth (\u3ci\u3eAmaranthus palmeri\u3c/i\u3e) and Waterhemp (\u3ci\u3eAmaranthus tuberculatus\u3c/i\u3e) across Diverse Geographical Regions in the United States

    Get PDF
    Knowledge of the effects of burial depth and burial duration on seed viability and, consequently, seedbank persistence of Palmer amaranth (Amaranthus palmeri S. Watson) and waterhemp [Amaranthus tuberculatus (Moq.) J. D. Sauer] ecotypes can be used for the development of efficient weed management programs. This is of particular interest, given the great fecundity of both species and, consequently, their high seedbank replenishment potential. Seeds of both species collected from five different locations across the United States were investigated in seven states (sites) with different soil and climatic conditions. Seeds were placed at two depths (0 and 15cm) for 3 yr. Each year, seeds were retrieved, and seed damage (shrunken, malformed, or broken) plus losses (deteriorated and futile germination) and viability were evaluated. Greater seed damage plus loss averaged across seed origin, burial depth, and year was recorded for lots tested at Illinois (51.3% and 51.8%) followed by Tennessee (40.5% and 45.1%) and Missouri (39.2% and 42%) for A. palmeri and A. tuberculatus, respectively. The site differences for seed persistence were probably due to higher volumetric water content at these sites. Rates of seed demise were directly proportional to burial depth (α=0.001), whereas the percentage of viable seeds recovered after 36 mo on the soil surface ranged from 4.1% to 4.3% compared with 5% to 5.3% at the 15-cm depth for A. palmeri and A. tuberculatus, respectively. Seed viability loss was greater in the seeds placed on the soil surface compared with the buried seeds. The greatest influences on seed viability were burial conditions and time and site-specific soil conditions, more so than geographical location. Thus, management of these weed species should focus on reducing seed shattering, enhancing seed removal from the soil surface, or adjusting tillage systems

    Genetic regulation of pituitary gland development in human and mouse

    Get PDF
    Normal hypothalamopituitary development is closely related to that of the forebrain and is dependent upon a complex genetic cascade of transcription factors and signaling molecules that may be either intrinsic or extrinsic to the developing Rathke’s pouch. These factors dictate organ commitment, cell differentiation, and cell proliferation within the anterior pituitary. Abnormalities in these processes are associated with congenital hypopituitarism, a spectrum of disorders that includes syndromic disorders such as septo-optic dysplasia, combined pituitary hormone deficiencies, and isolated hormone deficiencies, of which the commonest is GH deficiency. The highly variable clinical phenotypes can now in part be explained due to research performed over the last 20 yr, based mainly on naturally occurring and transgenic animal models. Mutations in genes encoding both signaling molecules and transcription factors have been implicated in the etiology of hypopituitarism, with or without other syndromic features, in mice and humans. To date, mutations in known genes account for a small proportion of cases of hypopituitarism in humans. However, these mutations have led to a greater understanding of the genetic interactions that lead to normal pituitary development. This review attempts to describe the complexity of pituitary development in the rodent, with particular emphasis on those factors that, when mutated, are associated with hypopituitarism in humans

    The ‘drug policy ratchet’: why do sanctions for new psychoactive drugs typically only go up?

    Get PDF
    It has been much more common for drugs to be subjected to tighter rather than looser control as drugs and evidence about their effects have has emerged. We argue that there is in place a drug policy ratchet which subjects new psychoactive substances (NPS) to increasing control through the continuation of historical patterns that involve the attribution to emerging drugs of guilt by three different kinds of association: guilt by deviant association; guilt by lunatic association; and guilt by molecular association. We use our contemporary ethnographic experience of drug policy-making to show how these processes continue to be applied to policy on NPS, alongside selective, narrative use of evidence and the ‘silent silencing’ by absorption of the concept of evidence-based policy. We show that the drug policy ratchet cannot be justified as an example of the precautionary principle in action, as this principle is itself not rationally justified. We conclude that recognition of the drug policy ratchet and its mechanisms may help researchers and policy-makers to improve regulation of NPS

    Effects of temperature on the transmission of Yersinia Pestis by the flea, Xenopsylla Cheopis, in the late phase period

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traditionally, efficient flea-borne transmission of <it>Yersinia pestis</it>, the causative agent of plague, was thought to be dependent on a process referred to as blockage in which biofilm-mediated growth of the bacteria physically blocks the flea gut, leading to the regurgitation of contaminated blood into the host. This process was previously shown to be temperature-regulated, with blockage failing at temperatures approaching 30°C; however, the abilities of fleas to transmit infections at different temperatures had not been adequately assessed. We infected colony-reared fleas of <it>Xenopsylla cheopis </it>with a wild type strain of <it>Y. pestis </it>and maintained them at 10, 23, 27, or 30°C. Naïve mice were exposed to groups of infected fleas beginning on day 7 post-infection (p.i.), and every 3-4 days thereafter until day 14 p.i. for fleas held at 10°C, or 28 days p.i. for fleas held at 23-30°C. Transmission was confirmed using <it>Y. pestis</it>-specific antigen or antibody detection assays on mouse tissues.</p> <p>Results</p> <p>Although no statistically significant differences in per flea transmission efficiencies were detected between 23 and 30°C, efficiencies were highest for fleas maintained at 23°C and they began to decline at 27 and 30°C by day 21 p.i. These declines coincided with declining median bacterial loads in fleas at 27 and 30°C. Survival and feeding rates of fleas also varied by temperature to suggest fleas at 27 and 30°C would be less likely to sustain transmission than fleas maintained at 23°C. Fleas held at 10°C transmitted <it>Y. pestis </it>infections, although flea survival was significantly reduced compared to that of uninfected fleas at this temperature. Median bacterial loads were significantly higher at 10°C than at the other temperatures.</p> <p>Conclusions</p> <p>Our results suggest that temperature does not significantly effect the per flea efficiency of <it>Y. pestis </it>transmission by <it>X. cheopis</it>, but that temperature is likely to influence the dynamics of <it>Y. pestis </it>flea-borne transmission, perhaps by affecting persistence of the bacteria in the flea gut or by influencing flea survival. Whether <it>Y. pestis </it>biofilm production is important for transmission at different temperatures remains unresolved, although our results support the hypothesis that blockage is not necessary for efficient transmission.</p
    corecore